Overview of tools:
Example input and output parameters/files.
Example Inputs
filenames and paths for the precipitation frequency table, DataRepository, and location to save the outputs.
Vector File covering area of interest (hydraulic domain).
NOAA data Atlas 14 Volume number, region, and duration.
CN Curve Number calculated for the area of interest.
Convolution Parameters (*epsilons)
tempEpsilon The number of hours over which to resample the incremental excess rainfall during the first convolution.
tempEpsilon2 The number of hours over which to resample the incremental excess rainfall during the final convolution.
convEpsilon The maximum allowable percent difference in incremental excess between two event at any given resampled time step.
volEpsilon The maximum allowable percent difference between the two events total runoff volume.
*Suggested epsilon values are given. Epsilon values should be adapted for each project area by analyzing the curve fitting
results. Plots can be shown for every group by setting display_plots=True
Optional Features
Check functions for default options for using a known seed, testing, debugging, etc. (e.g. seed=88)
Example Outputs
PrecipTable
Precipitation Frequency estimates for AOI.
| Tr | Lower 90% | Expected Value | Upper 90% |
|---|---|---|---|
| 2 | 5.25 | 6.32 | 7.60 |
| 5 | 6.85 | 8.27 | 9.96 |
| 10 | 8.20 | 9.95 | 12.05 |
| 25 | 10.06 | 12.45 | 15.86 |
| 50 | 11.48 | 14.56 | 18.75 |
| 100 | 12.85 | 16.86 | 22.22 |
| 200 | 14.20 | 19.33 | 26.19 |
| 500 | 16.20 | 22.89 | 31.84 |
| 1000 | 17.71 | 25.79 | 36.11 |
Random Events Table
Randomly chosen events & metadata before convolution.
| Return Period | Ann. Exc. Prob. | ARI | Log10_ARI | Expected Value | Lower (90%) | Upper (90%) | Quartile | Sigma | Fitted Lower (90%) Limit | Fitted Upper (90%) Limit | Random Precipitation |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.000240382 | 0.499939912 | 1.442945202 | 0.366686304 | 3.15751785 | 2.876612547 | 3.507262528 | 3 | 0.078317368 | 2.855989829 | 3.49088042 | 3.308578113 |
| 2.001189958 | 0.499702687 | 1.44393337 | 0.367370897 | 3.157996455 | 2.877045943 | 3.507791811 | 3 | 0.078224163 | 2.856763942 | 3.490992541 | 3.331452983 |
| 2.00267425 | 0.49933233 | 1.445477879 | 0.368439979 | 3.158744005 | 2.877722879 | 3.508618516 | 3 | 0.078224124 | 2.857440325 | 3.491818745 | 3.453517084 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 923.2492014 | 0.001083131 | 922.749111 | 6.827357379 | 13.55155136 | 11.4917289 | 14.67457848 | 3 | 0.087869372 | 12.10830888 | 15.16682025 | 12.88399871 |
| 1119.173615 | 0.000893516 | 1118.67354 | 7.019898923 | 14.11398151 | 11.92280701 | 15.27555124 | 3 | 0.088696172 | 12.59748493 | 15.81303532 | 14.49259104 |
| 3000 | 0.000333333 | 2999.499972 | 8.006200878 | 17.38236261 | 14.3978362 | 18.76211492 | 3 | 0.092819505 | 15.43292272 | 19.57804981 | 18.76211492 |
Curve Number Table
Randomly chosen CN number and metadata.
| Random Sample | Lower | Expected Value | Upper | Sigma | Fitted Lower Limit | Fitted Upper Limit | Random CN |
|---|---|---|---|---|---|---|---|
| 1 | 67 | 83 | 93 | 0.116325785 | 71.50469526 | 96.34332368 | 88 |
| 2 | 67 | 83 | 93 | 0.116325785 | 71.50469526 | 96.34332368 | 89 |
| 3 | 67 | 83 | 93 | 0.116325785 | 71.50469526 | 96.34332368 | 93 |
| ... | ... | ... | ... | ... | ... | ... | ... |
| 5107 | 67 | 83 | 93 | 0.116325785 | 71.50469526 | 96.34332368 | 90 |
| 5108 | 67 | 83 | 93 | 0.116325785 | 71.50469526 | 96.34332368 | 87 |
| 5109 | 67 | 83 | 93 | 0.116325785 | 71.50469526 | 96.34332368 | 93 |
Final Events Table
Final events to be modeled.
| hours | E0001 | E0002 | E0003 | ... | E0395 | E0396 | E0397 | E0398 | E0399 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 |
| 0.5 | 0.010 | 0.0047 | 0.0030 | ... | 0.01359 | 0.01038 | 0.00674 | 0.00234 | 0.00555 |
| 1 | 0.013 | 0.00948 | 0.0043 | ... | 0.0447 | 0.0584 | 0.0124 | 0.00356 | 0.008906 |
| 1.5 | 0.10 | 0.067680 | 0.0294 | ... | 0.1660 | 0.15102 | 0.1220 | 0.0198 | 0.0433 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 22 | 0.13 | 0.1534 | 0.0807 | ... | 0.1878 | 0.1707 | 0.234 | 0.07389 | 0.149328 |
| 23.5 | 0.103 | 0.21576 | 0.14100 | ... | 0.1373 | 0.1408 | 0.317 | 0.15162 | 0.221391 |
| 24 | 0.08732 | 0.25004 | 0.1836 | ... | 0.1132 | 0.1293 | 0.3403 | 0.2053 | 0.2430 |
Event Weight Table
| Weight | |
|---|---|
| E0001 | 0.006207654 |
| E0002 | 0.005313752 |
| ... | ... |
| E0964 | 0.000019172 |
| E0965 | 0.000071544 |
Metadata
Additional data developed in intermediated calculations included for traceability/reproducibility.
[{
# Run Data (Event_Duration_Quartile_Decile_CurveNumber)
'RunInfo':
{'E60001': 'E1_6Hr_Q1_D10_CN79',
'E60002': 'E2_6Hr_Q1_D90_CN78',
...}
# Cumulative (raw) precipitation time-series
'precip':
{'E60001': {'0.0': 0.0,
'0.5': 0.8010830472988398,
'1.0': 1.4541398793359375,
'1.5': 1.8372665541310351,
'2.0': 2.057129020916858,
'2.5': 2.1550875457224223,
'3.0': 2.170325538469955,
'3.5': 2.176856106790326,
'4.0': 2.176856106790326,
'4.5': 2.176856106790326,
'5.0': 2.176856106790326,
'5.5': 2.176856106790326,
'6.0': 2.176856106790326},
'E60002': { ...
}
# Cumulative excess-precipitation time-series
'cum_excess':
{'E60001': {'0.0': 0.0,
'0.5': 0.02479673948334961,
'1.0': 0.23766036959891948,
'1.5': 0.4300482251417235,
'2.0': 0.5562285716308201,
'2.5': 0.6155457935761868,
'3.0': 0.6249312656222388,
'3.5': 0.6289662984090281,
'4.0': 0.6289662984090281,
'4.5': 0.6289662984090281,
'5.0': 0.6289662984090281,
'5.5': 0.6289662984090281,
'6.0': 0.6289662984090281},
'E60002': { ...
}
# Incremental excess-precipitation time-series
'incr_excess'
{'E60001': {'0.0': 0.0,
'0.5': 0.02479673948334961,
'1.0': 0.21286363011556986,
'1.5': 0.19238785554280402,
'2.0': 0.1261803464890966,
'2.5': 0.059317221945366705,
'3.0': 0.009385472046052001,
'3.5': 0.004035032786789294,
'4.0': 0.0,
'4.5': 0.0,
'5.0': 0.0,
'5.5': 0.0,
'6.0': 0.0},
'E60002': { ...
}
# Curve groups (similar excess-precipitation time-series)
'groups'
{'E0001': ['E60002',
'E60930',
'E60551',
... ,
E64421',
E64423',
'E64483'],
'E0002': [...
]
}
# Test Statistic
'test_stat'
{'E0001': [0.235358,
0.251304,
0.214125,
...
0.18715,
0.184935,
0.174473],
'E0002': [...
]
}]